HOME > >
±âÁ¶°¿¬ ¹× Ưº°Åä·Ð
▪ MARYLAND(¸Þ¸±·£µå ´ëÇÐ) Ŭ¶óÅ© ¼®Á±³¼ö*, ±â°è°øÇаú ±³¼ö, »ê¾÷ÀΰøÁö´É¼¾ÅÍ ¼ÒÀå
- ¸Þ¸±·£µå ·Îº¸Æ½½º ¼¾ÅÍ(Maryland Robotics Center)
- ¸®½ºÅ© ¹× ½Å·Ú¼º ¼¾ÅÍ(Center for Risk and Reliability)
▪ Physical AI ´ë°¡
▪ ¿¬±¸ºÐ¾ß : »ê¾÷¿ë ÀΰøÁö´É(Industrial AI), »ê¾÷ ºòÅ×ÀÌÅÍ(Industrial Big Data), ½º¸¶Æ® Á¦Á¶ /Industry 4.0 ¿¬°è
AI ¼Ö·ç¼Ç, µðÁöÅÐ Æ®À© ÀüÀÌÇнÀ
▪ °æ·Â : ½º¸¶Æ® Á¦Á¶ ¹× ´ëÇü °øÀå Àüȯ ÇÁ·ÎÁ§Æ® ÁÖµµ
: 16³â ½º¸¶Æ® Á¦Á¶ ºÐ¾ß ¼±ÁöÀÚ 30ÀÎ
: 20³â ½º¸¶Æ® Á¦Á¶ ºÐ¾ß¿¡¼ °¡Àå ¿µÇâ·Â ÀÖ´Â ±³¼ö 20ÀÎ
: 22³â SME Eli Whitney »ý»ê¼º»ó ¹× SME/NAMRC S.M. Wu ¿¬±¸ ±¸Çö»ó ¼ö»ó
: 23³â ¿ì¼ö ³í¹®»ó(Outstanding Paper Award) ¼ö»ó
* Clark Distinguished Chair Professor(Ŭ¶óÅ© ¼®Á±³¼ö): ¸Þ¸±·£µå´ëÇб³ Ŭ¶óÅ© °ø°ú´ëÇÐ(Clark School of
Engineering)¿¡¼ ¿î¿µÇÏ´Â ÃÖ°í ¼öÁØÀÇ ¸í¿¹ ±³¼öÁ÷ ÇÁ·Î±×·¥À¸·Î, °øÇко߿¡¼ Ź¿ùÇÑ ¾÷Àû°ú ³ôÀº Çй®Àû ¿µÇâ·Â,
±¹Á¦Àû °¡½Ã¼º°ú ÀÎÁöµµ¸¦ Áö´Ñ Á¤±³¼ö¿¡°Ô ¼ö¿©µÊ.
¹ßÇ¥¿ä¾à
ÇÇÁöÄÃAI ±â¼ú
ÇÇÁöÄÃAI ±â¼ú
▪ UCLA (University of California, Los Angeles) ±³¼ö
▪ ¼¼°èÀûÀÎ ·Îº¿ ¿¬±¸ÀÇ ¸ÞÄ« UCLA ¡®RoMeLa(Robotics and Mechanisms Laboratory)¡¯ ·Îº¿ ¿¬±¸¼ÒÀå
▪ ¿¬±¸ºÐ¾ß : ÀÚÀ²½Ã½ºÅÛ, Àΰ£Çü ·Îº¿, ¿îµ¿ÇÐ, ·Îº¿ ±â°è°øÇÐ µðÀÚÀÎ, ·Îº¿ ¿îµ¿ ±â°èÇÐ
▪ °æ·Â : ¹Ì±¹ ÃÖÃÊÀÇ ÈÞ¸Ó³ëÀÌµå ·Îº¿ ¡®Âû¸®¡¯, Àü ¼¼°è ±³À°¡¤¿¬±¸¿ë ¿ÀǼҽº·Î °ø°³ÇÑ ¡®´ÙÀ©-OP¡¯, ÃÖ±Ù ÀÌÁ· º¸Çà
±â¼ú¿¡¼ ¶Ù¾î´Â ¼º°ú¸¦ º¸ÀÎ ¡®¾Æ¸£Å׹̽º¡¯ µî ´Ù¾çÇÑ Çõ½ÅÀû ·Îº¿ °³¹ß
: ¹Ì±¹¸³°úÇÐÀç´Ü(NSF) ¡® ŒÀº °úÇÐÀÚ»ó¡¯, GM ¡® ŒÀº ¿¬±¸ÀÚ»ó¡¯, ¡®¹Ì±¹ÀÚµ¿Â÷°øÇÐȸ(SAE) ±³À°»ó¡¯ µî ¼ö»ó
: ÆÄǽ·¯»çÀ̾𽺰¡ ¼±Á¤ÇÑ ¡® ŒÀº õÀç °úÇÐÀÚ 10ÀΡ¯¿¡ À̸§À» ¿Ã¸²
: ¼¼°è ÃÖÃÊ·Î ½Ã°¢Àå¾ÖÀÎÀÌ ¿îÀüÇÒ ¼ö ÀÖ´Â ¹«ÀÎ ÀÚµ¿Â÷ °³¹ßÇØ ¿ö½ÌÅÏÆ÷½ºÆ®·ÎºÎÅÍ ¡®´Þ ªm·ú¿¡ ¹ö±Ý°¡´Â ¼º°ú¡¯
¶ó´Â Æò°¡¸¦ ¹Þ¾Ò°í, ·Î¸á¶ó ·Îº¿¿¬±¸¼Ò´Â ±¹Á¦ ·Îº¿ÄÄ¿¡¼ ÃÑ 6ȸ ¿ì½Â Â÷Áö
¹ßÇ¥¿ä¾à
·Îº¸Æ½½º
·Îº¸Æ½½º
³ëŰ¾Æ ³×Æ®¿öÅ© ÀÎÇÁ¶ó ¾Æ½Ã¾Æ-ÅÂÆò¾ç ½Å¼ºÀå ºÐ¾ß¸¦ ÃѰýÇϰí ÀÖÀ¸¸ç, Á¤ºÎ ¹× ´ë±â¾÷ÀÌ ÀΰøÁö´É ±â¹ÝÀÇ Ã·´Ü ÀÚµ¿È, Ŭ¶ó¿ìµå, º¸¾È ±â¼úÀ» µµÀÔÇÏ¿© µðÁöÅÐ Àüȯ°ú ¹Ì·¡ Çõ½ÅÀ» ½ÇÇöÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÕ´Ï´Ù
µðÁöÅÐÈ¿Í ÀΰøÁö´É ¿¬°è°¡ ºü¸£°Ô È®»êµÊ¿¡ µû¶ó, °ß°íÇϰí ÀÚÁÖÀûÀ̸ç È®Àå °¡´ÉÇÑ ³×Æ®¿öÅ© ±¸Á¶¿¡ ´ëÇÑ ¼ö¿ä°¡ ±× ¾î´À ¶§º¸´Ù ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. ¿¬°áÇü AI, µðÁöÅÐ Æ®À©, ±×¸®°í ¹°¸®Àû AI°¡ ºÎ»óÇϸç, ÀÎÇÁ¶óÀÇ ¼³°è¡¤±¸Ãࡤ¿î¿µ ¹æ½ÄÀÌ Çõ½ÅÀûÀ¸·Î º¯ÈÇϰí ÀÖ½À´Ï´Ù.
±×ÀÇ ÁÖ¿ä Ã¥ÀÓ¿¡´Â HPC/AI µ¥ÀÌÅͼ¾ÅÍ ³×Æ®¿öÅ·, Å×¶óºñÆ®±Þ ³×Æ®¿öÅ·, ÆÐºê¸¯ ¹× ÀÎÅÍÄ¿³ØÆ® µî ÷´Ü ³×Æ®¿öÅ© ¼Ö·ç¼ÇÀÌ Æ÷ÇÔµÇ¸ç ³×Æ®¿öÅ©ÀÇ ¹Ì·¡ ÁøÈ¿Í °ü·ÃÇÏ¿© º§ ¿¬±¸¼Ò¿Í Çù¾÷ÇÏ¿´½À´Ï´Ù. ±×´Â ±Û·Î¹ú Á¦Á¶ »ê¾÷ ÃѰý, ¾Æ½Ã¾ÆÅÂÆò¾ç ´ë±â¾÷ ¹× À¥½ºÄÉÀÏ·¯ ºÎ¹® ºÎ»çÀå, ½Ì°¡Æ÷¸£ °í°´ CTO µî ´Ù¾çÇÑ ÇÙ½É ¸®´õ½ÊÀ» ¿ªÀÓÇÑ ¹Ù ÀÖ½À´Ï´Ù.
-
Philippe leads Nokia¡¯s Emerging Segments across Asia-Pacific for Nokia Network Infrastructure. He specializes in guiding governments and large enterprises through the adoption of Intelligent Automation, Cloud, and Security advancements to future-proof their AI-driven modernization efforts.
As digitalization and AI integration accelerate, the demand for robust, sovereign, and scalable network architectures has never been greater. The rise of connected AI, digital twins, and physical AI is reshaping how infrastructure is designed,deployed, and operated.
Philippe focuses on advanced network solutions, including HPC/AI data center networking and terabit-scale architecture. He engages with Nokia Bell Labs and customers to bring advanced use cases closer to deployment accelerating innovation across industry and scientific domains. He has held key leadership roles such as Global Head of Manufacturing Segment, APAC Vice President for Large Enterprise and Webscalers, and Customer CTO for Singapore.
¹ßÇ¥¿ä¾à
Realizing Physical AI: Network Evolution with Nokia Bell Labs Vision 2030
´ëÇѹα¹Àº ±¹°¡ ÀÎÇÁ¶ó¿Í »ê¾÷ ÀÚµ¿È Àü¹Ý¿¡ °ÉÃÄ Çö½Ç ¼¼°èÀÇ AI ½Ã½ºÅÛÀ» ±¸ÇöÇϱâ À§ÇÑ Àü·«Àû ¿©Á¤À» ½ÃÀÛÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È´Â ÃÊÀúÁö¿¬, ÀÚ±¹ ÁÖ±ÇÇü AI ÄÄÇ»ÆÃ, ȯ°æ ¼¾½Ì, ±×¸®°í ¾ÈÀüÇÏ°í ¹Ì¼Ç Å©¸®Æ¼ÄÃÇÑ ¿î¿µÀ» Áö¿øÇϴ ÷´Ü ³×Æ®¿öÅ© ÀÎÇÁ¶ó¿Í Ŭ¶ó¿ìµå Ç÷§Æû¿¡ ±â¹ÝÇϰí ÀÖ½À´Ï´Ù.
°¿¬ ¹× Åä·Ð
±âȹ¼¼¼Ç 1-1
Physical-Digital Intelligence
ÇÇÁöÄÃ-µðÁöÅÐ ÀÎÅÚ¸®Àü½º
ÀÌÁ¾¼®Àº KAIST »ê¾÷¹×½Ã½ºÅÛ°øÇаú ±³¼ö·Î ÀçÁ÷ ÁßÀ̸ç, Á¦Á¶ µµ¸ÞÀÎÀÇ Æ¯¼ºÀ» ¹Ý¿µÇÑ ÀΰøÁö´É ÇнÀ°ú ¸ðµ¨ ±â¹Ý ÃÖÀûÈ ¹æ¹ý·Ð °³¹ßÀ» Áß½ÉÀ¸·Î ¿¬±¸¸¦ ¼öÇàÇϰí ÀÖ´Ù. ö°, ¹ÝµµÃ¼, µð½ºÇ÷¹ÀÌ, ¹èÅ͸® µî ´Ù¾çÇÑ Á¦Á¶ ºÐ¾ß¿¡¼ Æ÷½ºÄÚ, LG¿¡³ÊÁö¼Ö·ç¼Ç, »ï¼ºÀüÀÚ µî ÁÖ¿ä ±â¾÷µé°ú »êÇÐÇù·Â ÇÁ·ÎÁ§Æ®¸¦ ¼º°øÀûÀ¸·Î ¼öÇàÇÏ¿© ÀÚÀ²Á¦¾î ±â¼úÀÇ ÇöÀå Àû¿ë °æÇèÀ» ÃàÀûÇÏ¿´´Ù. ƯÈ÷ ÀΰøÁö´É ±â¹Ý ÃÊÁ¤¹Ð µµ±Ý Á¦¾î ±â¼úÀ» °³¹ßÇÏ¿© ±¹°¡Çٽɱâ¼ú·Î ÁöÁ¤µÇ´Â ¼º°ú¸¦ ÀÌ·ç¾ú´Ù. KAIST ±³¼öÁøÀ¸·Î ÇÕ·ùÇϱâ Àü¿¡´Â ¼º±Õ°ü´ëÇб³ ½Ã½ºÅ۰濵°øÇаú ±³¼ö, ¹Ì±¹ SAS º»»ç¿¡¼ ÇÁ·Î±×·¡¸Ó·Î ±Ù¹«Çß´Ù. ¾ÆÀÌ¿À¿ÍÁÖ¸³´ëÇб³¿¡¼ »ê¾÷°øÇÐ ¹Ú»çÇÐÀ§¸¦, Æ÷Ç×°ø°ú´ëÇб³¿¡¼ Á¤º¸Åë½Å ¼®»çÇÐÀ§¸¦ ¹Þ¾Ò´Ù.
-
Jong-Seok Lee is a Professor in the Department of Industrial & Systems Engineering at KAIST. His research focuses on developing AI learning frameworks and model-based optimization methodologies that reflect the unique characteristics of manufacturing domains. He has successfully led multiple industry-academia collaboration projects with major manufacturing companies such as POSCO, LG Energy Solution, and Samsung Electronics, across various manufacturing sectors, including steel, semiconductors, displays, and batteries, building extensive experience in deploying autonomous control technologies in real production environments. In particular, he developed an AI-based coating weight control technology that was designated as a National Core Technology. Before joining KAIST, he was a faculty member in the Department of Systems Management Engineering at Sungkyunkwan University and worked as a programmer at SAS Institute Headquarters in the United States. He holds a Ph.D. in Industrial Engineering from Iowa State University and an M.S. in Information Technology from POSTECH.
¹ßÇ¥¿ä¾à
--
¹ßÇ¥¿ä¾à
A VLM and physics-informed human-in-the-loop approach for robot learning and manipulation in manufacturing scenarios
--
¹ßÇ¥¿ä¾à
ÇÇÁöÄà AI¸¦ À§ÇÑ µðÁöÅÐ Æ®À©ÀÇ ¿ªÇÒ°ú ¿¬±¸ ¹æÇâ
-
±âȹ¼¼¼Ç 1-2
Intelligent Robotics and Physical AI
Áö´ÉÇü ·Îº¿°ú ÇÇÁöÄà AI
³ë»óµµ ±³¼ö´Â ¼¿ï´ëÇб³ ±â°è¼³°èÇаú¿¡¼ »ý»ê°øÇÐÀ¸·Î ¹Ú»çÇÐÀ§¸¦ ¹Þ¾ÒÀ¸¸ç, ÇöÀç ¼º±Õ°ü´ëÇб³ °ø°ú´ëÇÐ »ê¾÷°øÇаú¿¡¼ ±³¼ö·Î ÀçÁ÷ ÁßÀÌ´Ù. ÁÖ¿ä ¿¬±¸ ºÐ¾ß´Â CAD/CAM/PLM, »ý»ê½Ã½ºÅÛ ¸ðµ¨¸µ&½Ã¹Ä·¹À̼Ç, ½º¸¶Æ®Á¦Á¶, ½º¸¶Æ®°øÀå, »çÀ̹ö¹°¸®½Ã½ºÅÛ°ú µðÁöÅÐÆ®À© µîÀÌ´Ù.
-
Sang Do Noh received his Ph.D. in mechanical design and production engineering from Seoul National University, Republic of Korea. He currently works as a professor in Department of Industrial Engineering at Sungkyunkwan University, Republic of Korea. His major research areas are CAD/CAM/PLM, modeling and simulation of manufacturing systems, smart manufacturing, smart factory, cyber-physical system and digital twin.
¹ßÇ¥¿ä¾à
--
¹ßÇ¥¿ä¾à
Digital Twins, AI, and Industrial Robotics
--
¹ßÇ¥¿ä¾à
ÇÇÁöÄÃAI¸¦ ÅëÇÑ LG ½º¸¶Æ®ÆÑÅ丮
--
¹ßÇ¥¿ä¾à
÷´ÜÁ¦Á¶·Îº¿È°¿ë ÇÇÁöÄÃAI °øÁ¤¸ðµ¨ °³¹ß ¹× ½ÇÁõ
-±âȹ¼¼¼Ç 1-3
Convergence of Robotics and Physical AI
·Îº¸Æ½½º¿Í ÇÇÁöÄà AIÀÇ À¶ÇÕ
-
¹ßÇ¥¿ä¾à
--
¹ßÇ¥¿ä¾à
Measuring and Improving Generalization of Robot Policies
-
±âȹ¼¼¼Ç 2-1
Mobility Innovation through Physical AI
¸ðºô¸®Æ¼ Çõ½Å°ú ÇÇÁöÄà AI
¹ßÇ¥¿ä¾à
AI in the physical world - Çö½Ç ¼¼°è¿Í À¶ÇÕÇÏ´Â AIÀÇ ¹Ì·¡
1. New Wave of Physical AI : ¿ì¸®´Â ¿Ö ¡®¹°¸®Àû¡¯ AI¸¦ ³íÇØ¾ß Çϴ°¡?
±âȹ¼¼¼Ç 2-2
Autonomous Manufacturing and Logistics Powered by Physical AI
ÇÇÁöÄà AI·Î ¿©´Â ÀÚÀ²Á¦Á¶ ¹°·ù
-
¹ßÇ¥¿ä¾à
--
¹ßÇ¥¿ä¾à
Physical AI – Future of Global Manufacturing Innovation
--
¹ßÇ¥¿ä¾à
-
±âȹ¼¼¼Ç 2-3
Physical AI Food Tech
ÇÇÁöÄà AI ǪµåÅ×Å©
-
¹ßÇ¥¿ä¾à
--
¹ßÇ¥¿ä¾à
Achieving Robust Motion Planning for Robotic Manipulation Tasks
-
±âȹ¼¼¼Ç 3-1
Computer Vision for Physical AI
ÇÇÁöÄà AI¸¦ À§ÇÑ ÄÄÇ»ÅÍ ºñÀü
-
¹ßÇ¥¿ä¾à
-
Çѵ¿À± ¹Ú»ç´Â NAVER AI LabÀÇ ¿¬±¸¿øÀ̸ç KAIST ÀΰøÁö´É´ëÇпø(GSAI)ÀÇ °âÀÓ±³¼öÀÌ´Ù. ±×´Â KAIST¿¡¼ 2018³â¿¡ ¹Ú»çÇÐÀ§, 2011³â¿¡ ÇлçÇÐÀ§¸¦ ¹Þ¾Ò´Ù. ±×ÀÇ ¿¬±¸´Â ±â°è ÇнÀÀÇ °üÁ¡¿¡¼ ´ë±Ô¸ð ¾ð¾î¸ðµ¨ (large language model)°ú ¸ÖƼ ¸ð´Þ ¸ðµ¨ (multi-model model)ÀÇ ¹ßÀü¿¡ ÃÊÁ¡À» µÎ°í ÀÖ´Ù. ±×´ÂICLR 2026°ú NeurIPS 2025 (2023³â ºÎÅÍ)ÀÇ ºÐ¾ßº°Area ChairÀ¸·Î Ȱµ¿Çϰí ÀÖ´Ù.
-
Dongyoon Han is a Research Scientist at NAVER AI Lab and an Adjunct Professor at KAIST GSAI. He received his Ph.D. in 2018 and his B.S. in 2011, both from KAIST. His research focuses on advancing large language models and multimodal models through the lens of machine learning. He has served as an Area Chair for ICLR 2026 and NeurIPS 2025 (since 2023).
¹ßÇ¥¿ä¾à
Towards Perceptive Visual Representations for Real-World Multimodal Learning
±¹¹®: ÀÌ ¹ßÇ¥¿¡¼´Â real-world multimodal learningÀ» À§ÇÑ µÎ °¡Áö perceptive visual representation Á¢±Ù¹ýÀ» °£·«È÷ ¼Ò°³ÇÑ´Ù. ù ¹øÂ° ¿¬±¸¿¡¼´Â robot learning, video label propagation, pose tracking µîÀÇ task¿¡ Àû¿ë °¡´ÉÇÑ »õ·Î¿î self-supervised ±â¹ÝÀÇ sequential scene understanding ¹æ¹ýÀ» ¼Ò°³ÇÑ´Ù. ÁÖ¾îÁø ¿¬¼Ó Àå¸éÀ» bottleneck tokenÀ¸·Î ¾ÐÃàÇϰí ÃÖ¼ÒÇÑÀÇ visual cues¸¸À¸·Î ÀÌÈÄ ÇÁ·¹ÀÓÀ» È¿°úÀûÀ¸·Î ¿¹ÃøÇϵµ·Ï visual representationÀ» ÇнÀÇÏ¸é °ß°íÇϰí È¿À²ÀûÀÎ Àå¸é ¿¹ÃøÀ» °¡´ÉÇÏ°Ô ÇÔÀ» º¸ÀδÙ. µÎ ¹øÂ° ¿¬±¸¿¡¼´Â multimodal language models (MLLMs)ÀÇ reinforcement learning (RL) ¹× supervised fine-tuning (SFT) ÇнÀ Àü·«À» ºÐ¼®Çϸç, À̵éÀÌ visual representations¿¡ ¾î¶² ¿µÇâÀ» ¹ÌÄ¡´ÂÁö¸¦ ½Éµµ ÀÖ°Ô Å½±¸ÇÑ´Ù. RLÀº SFTº¸´Ù ´õ °·ÂÇÏ°í °ø°£ÀûÀ¸·Î Á¤¹ÐÇÑ visual representationsÀ» ¹è¿òÀ» º¸ÀÌ¸é¼ À̰ÍÀÌ vision encoderÀÇ ¼º´ÉÀ» Å©°Ô Çâ»ó½ÃÅ´À» ¶ÇÇÑ º¸¿©ÁØ´Ù.-
¹ßÇ¥¿ä¾à
Feed-forward 3d reconstruction and novel-view synthesis
--
¹ßÇ¥¿ä¾à
Vision-Language-Action ¸ðµ¨ÀÇ Action Noise °³¼± ¿¬±¸ ¼Ò°³
-±âȹ¼¼¼Ç 3-2
AI Research Insight
AI ¿¬±¸ ÀλçÀÌÆ®
-
¹ßÇ¥¿ä¾à
Á¶ÇÕÀû ÇൿÀ» °í·ÁÇÑ ÄÁ¼½Ãò¾ó ¹êµ÷(Contextual Bandit)°ú RLHF¿¡¼ÀÇ È¿À²Àû Ž»ö
--
¹ßÇ¥¿ä¾à
Emergent Temporal Correspondences from Video Diffusion Transformers
--
¹ßÇ¥¿ä¾à
GraLoRA: °íÈ¿À² °í¼º´É ÆÄÀÎÆ©´×À» À§ÇÑ ¼¼ºÐÈµÈ Àú·©Å© ÇнÀ±â¹ý
-
±âȹ¼¼¼Ç 3-3
Physical AI Safety & Security
ÇÇÁöÄà AI ¾ÈÀü ¹× º¸¾È
-
¹ßÇ¥¿ä¾à
--
¹ßÇ¥¿ä¾à
±Û·Î¹ú ¹«Àα⠱â¼ú ¹ßÀü°ú ÇÇÁöÄà AI Àû¿ë °úÁ¦
--
¹ßÇ¥¿ä¾à
ÇÇÁöÄà AI·Î ÀÎÇÑ ±¹°¡ Â÷¿øÀÇ À§Çù°ú ´ëÀÀ¹æ¾È ¹× ÁÖ¿ä±¹ µ¿Çâ
-Æóȸ°¿¬